Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 16(7): e0255096, 2021.
Article in English | MEDLINE | ID: covidwho-1325440

ABSTRACT

The COVID-19 pandemic raises the need for diverse diagnostic approaches to rapidly detect different stages of viral infection. The flexible and quantitative nature of single-molecule imaging technology renders it optimal for development of new diagnostic tools. Here we present a proof-of-concept for a single-molecule based, enzyme-free assay for detection of SARS-CoV-2. The unified platform we developed allows direct detection of the viral genetic material from patients' samples, as well as their immune response consisting of IgG and IgM antibodies. Thus, it establishes a platform for diagnostics of COVID-19, which could also be adjusted to diagnose additional pathogens.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Single Molecule Imaging/methods , Viral Proteins/genetics , Antibodies, Viral/blood , Base Sequence , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , COVID-19 Serological Testing/standards , Enzyme-Linked Immunosorbent Assay , Humans , Immune Sera/chemistry , Immunoglobulin G/blood , Immunoglobulin M/blood , Nasopharynx/virology , Polyproteins/blood , Polyproteins/genetics , RNA, Viral/blood , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Single Molecule Imaging/instrumentation , Viral Proteins/blood
2.
Cell Prolif ; 54(9): e13091, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1320384

ABSTRACT

OBJECTIVES: Recent studies have shown the presence of SARS-CoV-2 in the tissues of clinically recovered patients and persistent immune symptoms in discharged patients for up to several months. Pregnant patients were shown to be a high-risk group for COVID-19. Based on these findings, we assessed SARS-CoV-2 nucleic acid and protein retention in the placentas of pregnant women who had fully recovered from COVID-19 and cytokine fluctuations in maternal and foetal tissues. MATERIALS AND METHODS: Remnant SARS-CoV-2 in the term placenta was detected using nucleic acid amplification and immunohistochemical staining of the SARS-CoV-2 protein. The infiltration of CD14+ macrophages into the placental villi was detected by immunostaining. The cytokines in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens at delivery were profiled using the Luminex assay. RESULTS: Residual SARS-CoV-2 nucleic acid and protein were detected in the term placentas of recovered pregnant women. The infiltration of CD14+ macrophages into the placental villi of the recovered pregnant women was higher than that in the controls. Furthermore, the cytokine levels in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens fluctuated significantly. CONCLUSIONS: Our study showed that SARS-CoV-2 nucleic acid (in one patient) and protein (in five patients) were present in the placentas of clinically recovered pregnant patients for more than 3 months after diagnosis. The immune responses induced by the virus may lead to prolonged and persistent symptoms in the maternal plasma, placenta, umbilical cord, cord blood and amniotic fluid.


Subject(s)
Cytokines/analysis , Placenta/virology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Proteins/isolation & purification , Adult , Amniotic Fluid/chemistry , COVID-19/pathology , Female , Fetal Blood/chemistry , Humans , Infant, Newborn , Macrophages/immunology , Nucleic Acid Amplification Techniques , Placenta/immunology , Pregnancy , RNA, Viral/blood , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Viral Proteins/blood
3.
mBio ; 11(5)2020 10 20.
Article in English | MEDLINE | ID: covidwho-883315

ABSTRACT

An accurate diagnostic test for early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is the key weapon to control the coronavirus disease 2019 (COVID-19) pandemic. We previously reported that the SARS-CoV-2 genome contains a unique orf8 accessory gene absent from other human-pathogenic coronaviruses. Here, we characterized the SARS-CoV-2 orf8 as a novel immunogenic secreted protein and utilized it for the accurate diagnosis of COVID-19. Extracellular orf8 protein was detected in cell culture supernatant and in sera of COVID-19 patients. In addition, orf8 was found highly immunogenic in COVID-19 patients, who showed early seropositivity for anti-orf8 IgM, IgG, and IgA. We hypothesize that orf8 secretion during SARS-CoV-2 infection facilitates early mounting of B cell response. The serological test detecting anti-orf8 IgG antibody can be used for the early and accurate diagnosis of COVID-19.IMPORTANCE Current commercially available serological tests for COVID-19 patients are detecting antibodies against SARS-CoV-2 nucleoprotein and spike glycoprotein. The antinucleoprotein and antispike antibodies can be accurately detected in patients during the mid or late stage of infection, and therefore, these assays have not been widely used for early diagnosis of COVID-19. In this study, we characterized the secretory property of a SARS-CoV-2 orf8 protein and proposed that orf8 secretion during infection facilitates early mounting of the B cell response. We demonstrated the presence of anti-orf8 antibodies in both symptomatic and asymptomatic patients during the early stage of infection, while the anti-N antibody is not detected. Our serological test detecting anti-orf8 antibodies may facilitate the development of early and accurate diagnosis for COVID-19.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Viral Proteins/immunology , Antibodies, Viral/blood , Antigens, Viral/blood , Antigens, Viral/metabolism , COVID-19 , Cell Line , Coronavirus Infections/blood , Early Diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2 , Viral Proteins/blood , Viral Proteins/metabolism
4.
Int J Lab Hematol ; 42 Suppl 1: 11-18, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-602630

ABSTRACT

The ongoing COVID-19 pandemic originated in Wuhan, Hubei Province, China, in December 2019. The etiologic agent is a novel coronavirus of presumed zoonotic origin with structural similarity to the viruses responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). Like SARS and MERS, COVID-19 infection manifests most frequently with lower respiratory symptoms. A minority of patients progress to acute respiratory distress syndrome/ diffuse alveolar damage. In addition to its central role in the diagnosis of COVID-19 infection, the clinical laboratory provides critical information to clinicians regarding prognosis, disease course, and response to therapy. The purpose of this review is to (a) provide background context about the origins and course of the pandemic, (b) discuss the laboratory's role in the diagnosis of COVID-19 infection, (c) summarize the current state of biomarker analysis in COVID-19 infection, with an emphasis on markers derived from the hematology laboratory, (d) comment on the impact of COVID-19 on hematology laboratory safety, and (e) describe the impact the pandemic has had on organized national and international educational activities worldwide.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Services/organization & administration , Coronavirus Infections/epidemiology , Lymphopenia/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Thrombocytopenia/epidemiology , Antibodies, Viral/blood , Betacoronavirus/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , COVID-19 Testing , China/epidemiology , Clinical Laboratory Techniques/methods , Communicable Disease Control , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Coronavirus Infections/transmission , Hematology/methods , Humans , Incidence , Italy/epidemiology , Laboratories/organization & administration , Lymphopenia/diagnosis , Lymphopenia/physiopathology , Personal Protective Equipment/supply & distribution , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Pneumonia, Viral/transmission , Procalcitonin/blood , SARS-CoV-2 , Thrombocytopenia/diagnosis , Thrombocytopenia/physiopathology , United States/epidemiology , Viral Proteins/blood
SELECTION OF CITATIONS
SEARCH DETAIL